The bestrophin- and TMEM16A-associated Ca2+-activated Cl– channels in vascular smooth muscles

نویسندگان

  • Vibeke Secher Dam
  • Donna MB Boedtkjer
  • Christian Aalkjaer
  • Vladimir Matchkov
چکیده

The presence of Ca(2+)-activated Cl(–) currents (I(Cl(Ca))) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca(2+)]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with I(Cl(Ca)). Two distinct I(Cl(Ca)) are characterized in VSMCs; the cGMP-dependent I(Cl(Ca)) dependent upon bestrophin expression and the ‘classical’ Ca(2+)-activated Cl(–) current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical I(Cl(Ca)). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl(–) channels. It is suggested that TMEM16A expression modulates voltage-gated Ca(2+) influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the Ca2+ -activated Cl- channels bestrophin and anoctamin in epithelial cells.

Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca(2+)-activated Cl(-) currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca(2+)-activated Cl(-) channel as well as a regulator of Ca(2+) signaling. It is also present at much lower levels in other cell types in...

متن کامل

Preassociated apocalmodulin mediates Ca2+-dependent sensitization of activation and inactivation of TMEM16A/16B Ca2+-gated Cl- channels.

Ca(2+)-activated chloride currents carried via transmembrane proteins TMEM16A and TMEM16B regulate diverse processes including mucus secretion, neuronal excitability, smooth muscle contraction, olfactory signal transduction, and cell proliferation. Understanding how TMEM16A/16B are regulated by Ca(2+) is critical for defining their (patho)/physiological roles and for rationally targeting them t...

متن کامل

Expression profile and protein translation of TMEM16A in murine smooth muscle.

Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipet...

متن کامل

TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

Ca2+-activated Cl- channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting...

متن کامل

TMEM16A channels generate Ca²⁺-activated Cl⁻ currents in cerebral artery smooth muscle cells.

Transmembrane protein (TMEM)16A channels are recently discovered membrane proteins that display electrophysiological properties similar to classic Ca(2+)-activated Cl(-) (Cl(Ca)) channels in native cells. The molecular identity of proteins that generate Cl(Ca) currents in smooth muscle cells (SMCs) of resistance-size arteries is unclear. Similarly, whether cerebral artery SMCs generate Cl(Ca) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014